BIO - 132 Population Genetics of Human Copy Number Variations : Models and Simulation of their Evolution Along and Across the Genomes

ثبت نشده
چکیده

Population genetic models play a significant role in human genetic research, since they promise to provide a better understanding of both evolution of normal variations of the genomes as well as development of disease promoting genomic segments. Currently, since we are limited in our knowledge about human demographic history and variations of recombination and mutation rates, large-scale computer simulation has become an important and necessary tool in genetics to generate and observe the behavior of these and other evolutionary models. In this paper, we propose and computationally simulate a model of evolution for unique and segmen-tally duplicated regions of human genome, which manifest in genome-wide variations in copy number. Copy Number Variations (CNVs) have attracted attention of many scientists because of their possible association with genomic diseases and predisposition to various health conditions, and yet, the underlying population genetic models, needed for association studies, remain largely undeveloped. Additionally, segmentally duplicated regions of the human genome show a complex behavior of copy number changes (compared to unique genomic regions) and are specifically known for catalyzing pathogenic and unstable genomic rearrangements; and thus, present genomic hot spots requiring further studies. Therefore, our simulated evolutionary model opens new horizons for understanding mechanisms underlying the evolutionary developments (especially in segmentally duplicated regions) of copy number variations, for building the foundations for associations studies involving CNV markers, and finally, for characterizing parameters for stochastic diffusion models to understand asymp-totic behavior of such evolutionary processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-38: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells

Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...

متن کامل

I-44: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells

Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...

متن کامل

Analysis of Copy Number Variations in Patients with Autism Using Cytogenetic and MLPA Techniques: Report of 16p13.1p13.3 and 10q26.3 Duplications

Autism is a common neuropsychiatric disorder affecting 1 in 68 children. Copy number variations (CNVs) are known to be major contributors of autism spectrum disorder (ASD). There are different whole genome or targeted techniques to identify CNVs in the patients including karyotyping, multiplex ligation-dependent probe amplification (MLPA) and array CGH. In this study, we used karyotyping and ML...

متن کامل

Comparative genomics of human stem cell factor (SCF)

Stem cell factor (SCF) is a critical protein with key roles in the cell such as hematopoiesis, gametogenesis and melanogenesis. In the present study a comparative analysis on nucleotide sequences of SCF was performed in Humanoids using bioinformatics tools including NCBI-BLAST, MEGA6, and JBrowse. Our analysis of nucleotide sequences to find closely evolved organisms with high similarity by NCB...

متن کامل

Applications of multiplex ligation-dependent probe amplification (MLPA) method in diagnosis of cancer and genetic disorders

Introduction: Lots of human diseases and syndromes result from partial or complete gene deletions and duplications or changes of certain specific chromosomal sequences. Many various methods are used to study the chromosomal aberrations including Comparative Genomic Hybridization (CGH), Fluorescent in Situ Hybridization (FISH), Southern blots, Multiplex Amplifiable Probe Hybridisation (MAP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007